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Abstract— Laminate and structural mechanics for the analysis of laminated composite plate struc-
tures with piezoelectric actuators and sensors are presented. The theories implement layerwise
representations of displacements and electric potential, and can model both the global and local
electromechanical response of smart composite laminates. Finite-element formulations are
developed for the quasi-static and dynamic analysis of smart composite structures containing
piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and
capability of the developed mechanics to capture the global and local response of thin and/or thick
laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the
unique capabilities of the mechanics in analyzing the static and free-vibration response of composite
plates with distributed piezoelectric actuators and sensors. Published by Elsevier Science Ltd.

1. INTRODUCTION

The development of a new class of ““smart’” composite materials and adaptive structures
with sensory/active capabilities may further improve the performance and reliability of
aeronautical structural systems. Such materials will combine the superior mechanical
properties of composite materials, as well as incorporate the additional inherent capability
to sense and adapt their static and dynamic response (adaptive structures), or continuously
monitor the type, location, and extent of eminent damage (health monitoring). However,
this effort requires the development of admissible mechanics entailing capabilities to model
the unified electromechanical response of sensory/active structures including the coupling
between sensors and actuators. Additionally, the mechanics should address local through-
the-thickness effects, such as the evolution of complicated stress-strain fields in smart
composites and interfacial phenomena between the embedded micro-devices and passive
composites plies in a smart laminate. The present paper presents the development of
layerwise mechanics for the dynamic analysis of smart composite plate structures with
embedded piezoelectric sensors and actuators.

There have been many theories and models proposed for the analysis of laminated
composite plates containing active and passive piezoelectric layers [see, e.g., Lammering
(1991) ; Crawley and Lazarus (1989); Lee and Moon (1989, 1990); Lee (1990); Tzou
and Tseng (1990); Wang and Rogers (1991)]. Most of these theories use simplifying
approximations attempting to replicate the induced strain or electric fields generated by a
piezoelectric layer under an external electric field or applied load. An exact solution by
Heyliger and Saravanos (1995) for piezoelectric laminated plates has shown that the electric
and elastic field distributions are often poorly modeled using simplified theories. Variational
methods and finite element models for piezoelectric solids have also been reported by Allik
and Hughes (1970), Naillon et al. (1983) and Ha er al. (1992). Related work has been
reported for infinite piezoelectric laminates by Pauley (1974), and for finite elastic laminated
beams and plates with induced strain actuation by Robbins and Reddy (1991, 1993). The
work in this paper builds on previous layerwise laminate theories [Reddy (1987) ; Robbins
and Reddy (1991, 1993)], as well as on that of the authors [Heuliger ez al. (1994) ; Saravanos
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(1993, 1994); Saravanos and Heyliger (1995)] to consider the complete dynamic elec-
tromechanical response of smart piezoelectric plate structures under external mechanical
or electrical loading.

The paper describes layerwise laminate theories for composite structures containing
embedded piezoelectric layers as sensors or actuators. According to these laminate theories,
which will be denoted interchangeably in the remaining paper layerwise or discrete-layer
theories, each layer is modeled using independent approximations for the in-plane dis-
placement components and the electrostatic potential in a unified representation, as man-
dated by the linear theory of piezoelectricity. The laminate theories assume either constant
or variable transverse displacements through the laminate thickness. Finite element solu-
tions for the dynamic response of smart structures are further developed. Application
studies verify the accuracy and demonstrate the advantages and versatility of the mechanics
in analyzing the dynamic response of composite plates with sensory and active piezoelectric
elements.

2. PIEZOELECTRIC LAMINATES

This section describes the developed mechanics for composite laminates with embedded
piezoelectric sensors and actuators. The coupled material equations for each ply are first
presented in a unified way which may represent either piezoelectric or passive composite
layers. Discrete-layer approximations are subsequently defined and the resultant piezo-
electric laminate theories are presented. A standard laminate coordinate system is
assumed, such that x and y are the in-plane axes and the z-direction coincides with the
thickness dimension of the laminate. The general problem considered in this paper is to
determine the dynamic behavior of the elastic and electric field components throughout the
laminate under an applied mechanical or electrical loading. Each ply of the laminate can
be composed of a purely elastic, piezoelectric, or conducting material. The forcing function
may be a combination of applied tractions, electric potential, surface displacements, or
charge.

Material representation
The constitutive equations of a piezoelectric material are given by Tiersten (1969),

S, =slo,+d,E,

D, =d;o,+¢,.E, 0]
or, equivalently,

6, =C!S,—e,E,

D, = e,,S_,-—}—siEk 2)

wherei,j=1,...,6andk,/=1,...,3;0,and S, are the mechanical stresses and engineering
strains in vectorial notation ; E, is the electric field vector; D, is the electric displacement
vector; s; and C,; are the elastic compliance and stiffness tensors; d; and e, are different
forms of the piezoelectric tensor; and g, is the electric permittivity tensor of the material.
Superscripts E, a, and S indicate constant electric field, stress and strain conditions, respec-
tively. The electric field vector E, is the gradient of the electric potential ¢

E, = —0¢/ix; (3)

The materials are assumed to be monoclinic class 2 crystals with a diad axis parallel to the
z axis. The poling direction of the material is assumed coincident with the z axis. The
assumed material class is general enough, such that eqns (1) or (2) may encompass the
behavior of off-axis homogenized fibrous piezoelectric plies, as well as, passive composite
plies [e] = 0.
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The energy stored (electric enthalpy) in the piezoelectric layer includes the components
of elastic strain energy, piezoelectric energy and electric energy [Tiersten (1969)],

H, = %(C”Sis, —2¢,E,S, — ey EE) @

Discrete-layer laminate theory

Two new layerwise laminate theories (also called discrete-layer theories) are proposed
in this paper using piecewise continuous approximations along the z-axis for both dis-
placement and electric potential fields. Previous work has demonstrated the advantages of
layerwise approaches in capturing local intralaminar and interlaminar effects in elastic
[Reddy (1987)] and elastodynamic problems [Saravanos (1993, 1994)] of composite plates.
Consequently, the suitability of discrete-layer theories to represent the additional het-
erogeneity induced by the presence of embedded piezoelectric sensors/actuators in com-
posite laminates can not be understated.

In the present approach, the electric potential is included in the state variables. The
laminate is subdivided into N-1 sublaminates (or discrete layers), and continuous fields are
assumed in each sublaminate, such that piecewise continuous representations result through
the thickness of the laminate (see Fig. 1) of the following form:

N

u(x,p,z,0) = Y w(x,y, ¥ (2)

j=1

N

v(x,y,z,0) = Y v/(x,p, P/ (2)

i=1

N
Wi w20 = 3w 09

j=1

DX, v,z 1) = Z ¢/ (x, v, )P/(2) )

where u, v, w are the displacements along the x, y and z axes; superscript j indicates the
points z/ at the beginning and end of each discrete layer; v/, v/, w’/, ¢’ are the respective
displacements and electric potential at each point z/ (see Fig. 1); ¥/(z) are interpolation
functions. Two unique advantages of the method are obvious: (1) the complete electro-
mechanical state of the smart laminate is represented; and (2) the formulation entails
the inherent option to select the detail of approximation in both electric and displacement
fields. At the lower limit of one discrete-layer (N = 2) the method reduces to “single-layer”
type of laminate theories, and for linear W(z) it reduces to the first-order shear theory.

LAMINATE

Electric potential Displacements

(a) Smart Laminate (b) Discrete-layer laminate theory assumptions

Fig. 1. Typical piezoelectric laminate configuration. (a) Concept; (b) assumed through-the-thick-
ness displacement and electric potential fields.
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Moreover, the through the thickness displacement can be assumed constant (¥*(z) = 1) or
variable, which establishes the difference between the two laminate theories. The first, which
will be identified as the w-constant theory, results by assuming ¥*(z) = 1 in eqns (5) and
is effectively a plate laminate theory. The second, which is identified as the w-variable
theory, is a three-dimensional laminate theory. In the present paper only linear interpolation
functions W(z) were considered.

In the context of eqns (5), the engineering strain and electric field components become

N
S(x,p.z,0) = Y S{(x,p, 0¥ (z) i=126
=1

N
S3 (x»}‘a Z, t) = Z Sé (X,,V’ t)‘Py;I(Z)
j=1

<

Si(x,v,z,0)

{

S/(x,y, WL +8](x. . W@ i = 4.5
1

J

N
E(x,y,z,0) = Y El(x,p,0)¥'(z) i=1,2
=1

J

E.(x.5,2.0) = ¥ Ed(x,p, )% (2) (6)
i=1

where {S’} and {E’} are, respectively, the generalized strain and electric field vectors defined
as follows:

S{=U. SL=V, Si=U,+Vi Si=W S{=V/ Si=U §;=W, S{=W,

El=-0, E/=—-9¢, E,=-0 7)

[N

The electric enthalpy of the laminate is, by definition,

h{2
H, = J H,dz (8)

—hi2

where /£ is the laminate thickness. By combining eqns (4, 6, 8) and integrating through-the-
thickness, the energy stored in a piezoelectric laminate is obtained as a quadratic expression
of the generalized strain/electric field and the generalized laminate stiffness, piezoelectric
and dielectric permittivity matrices,

1 N N _ - _
H, = > Y. Y [SrAL'S; + 28BS +S;DyS)

m=1n=1
—2(EFE;S” + EFESy + EYEST) — (ENGEE; +ETGED)]  (9)

i

In the above equation, A™, B™ and D™ are the generalized laminate stiffness matrices,

L "z
A;"/m — Z Cl/\Pm(Z)lIJ"(Z) dz l,] = 1, 2’ 6
=)y
[N
A=Y | CY¥'@¥r@d: i=126 j=3
=1
Lz
A=Y | CYI)Y.)dz ij=45
=

£
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L 2o
&V=ZJ CY" W (2)dz ij=4.5
=1

Zi

Lz
Dyzzj C¥Y" ()Y (2)dz i,j=4,5 (10)

=1

E™ are the piezoelectric laminate matrices,

(=1
e, V" ()Wi(z)dz i=3 j=1,2,6

M=~

By =
=1Jz
Lz

B =Y | ePme¥ied: i=12 j=45
=1z

- L ”:H |

Ep =) e V" ()W (z)dz i=12 j=4,5
=1);

. Lo =y

HESY j e 1P () dz ij=3 (n
=1J

and G™ are the laminate matrices of electric permittivity,

L

G =) J g V"W (2)dz i=j=12

I1=1

I Ziv)
w:zjgmm%@Miq=3 (12)
=1

/
Zt

where L is the number of plies in the laminate.

3. PIEZOELECTRIC STRUCTURES

The starting point for the equations of motion of a composite structure with embedded
active/sensory piezoelectric layers in a variational form, is the Hamilton’s principle for a
piezoelectric medium [Tiersten (1969))

5J<hj[gmwﬁ416“&ndV+J
! 14

!

rmjwmm—@@d5=o (13)

i R
Here 1 is time, V" and S are the volume and surface occupied by and bounding the solid,
overbar ¢ and overbar g are the surface tractions and surface charge, respectively, ¢ is the
variational operator, the overdot represents differentiation with respect to time, and H,
represents the local electric enthalpy.

Integration through-the-thickness yields the Hamilton’s principle (equations of
motion) in terms of the generalized laminate quantities defined in the previous section

! AN !
5[ dzf <2 Yy P"b"b”—HL)dA+J dZJ (6,0u, —od)dS =0 (14)
Lo A 0 N

i=tj=1

where 4 is the mid-plane area occupied by the plate, H, is the electric enthalpy of the
laminate given by eqn (9), and P” are the generalized densities (per unit area) of the laminate
given by



364 D. A Saravanos et al.

Py

II

Lz,
IZ} J p,‘I”'(z)‘I’j(z) dz (15)

2

To develop structural solutions, local in-plane approximations of the generalized elec-
tromechanical state (displacements and electric potential) in eqn (5) are proposed of the
following type.

M
U'x,y. 1) = 3, UN(DRI(x. )
i=1

Vi(x,p,1) = f VA RI(x,y)

M

Wi(x,y,0) = Y, WHOR?(x,)
i=1

M

Q/(x,p,0) = ), PRI (x,y) (16)

i=1

where U7 is the value of the generalized displacement component U’ corresponding to the
i-th in-plane interpolation function R(x, y), and so forth. This formulation forms the basis
of the finite element technique, which is subsequently described.

Finite element formulation

For structural problems with general boundary, geometry and material configurations,
the local in-plane approximations in eqn (16) are used to develop finite element based
solutions. Substituting these approximations into the equation of motion (14) and collecting
the coefficients, allows the governing dynamic equations of the structure to be expressed in
a discrete matrix form as,

My]  [0] 0] [0] {0} K] K] [Ki] [Ky] {U}

[0] [M,y] [0] [O] V3 N (K2i]  [Kpa] [Kaa]  [Kaos] Vi

[0] 0] [Mss] [0] (W} (Ksi] [Kso] ([Kssl [Kisal {W}

[0] [0] (0] [0] {®} (Ka] [Kio] [Kas] [Kys] {®}
{F,(n)}
{F.(n)} (17)
{Fi(n)}
{Q}

The elements of these matrices are calculated from the generalized laminate matrices defined
in eqns (10-12) as determined by the variational statement. The nature of the submatrices
depends also on the approximation used for w(z). For variable w, the structure of [K”*] is
similar to those of the other matrices. For constant w, the submatrices within [K"], [K*],
and [K*] are column vectors and those in [K*’] become scalars. In general, the submatrices
within each [KY] are each of order (N), while the matrices [K”] depend on the order of the
in-plane approximation (M).

Based on the above formulation, a 4-node finite element was developed with linear in-
plane shape functions. Reduced integration (single point Gauss quadrature) was
implemented in the calculation of the shear stiffness terms to eliminate overstiffening at low
thickness. The final representation of the coupled dynamic system can be expressed in fairly
compact form:
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0 oflier) LK.l [Kellli}) UQ®;
Assuming that both sensory and active piezoelectric layers are embedded into the structure,
the electric potential vector is subdivided in a free or sensory component ¢* representing
the voltage output at the sensors, and a forced or active component ¢* representing the

voltage imposed on the active piezoelectric layers, such that {¢} = {¢";¢"}. Separating
the active and sensory potential components in eqn (18), the equations take the following

form

{[Mwl 0} { (i1} }+ [[KW] [ng]] { {u} } { (F(0)} — K1 {o") } a19)

0 oflé}) LKL KU Q) —IK{{e")

where superscripts F and A indicate the partitioned submatrices in accordance with the
selected sensory and active configuration, respectively. The left-hand side includes the
unknown electromechanical response of the structure {u, ¢}, that is, the resultant dis-
placements and voltage at the sensors. The right-hand side includes the excitation of the
structure in terms of mechanical loads and applied voltages on the actuators. The electric
charge at the sensors Q*(¢) remains constant with time (practically open-circuit conditions)
and is assumed equal to zero.

Among the obvious advantages is the capability of the mechanics to model the response
of the piezoelectric structure either: in “active” mode, that is, with specified voltages A¢”
applied across the piezoelectric layers to induce a desirable deflection/strain state; or in
“sensory”’ mode where displacements or mechanical loads are applied to the structure and
the resultant voltage or charge is monitored ; or in combined ““activity/sensory”” mode.

Additional manipulation of eqns (19) results in the following uncoupled dynamic
equations for the structural displacements and sensory voltages respectively

[ML,]{i} + (K, ] — [KigJIKG] ' KD {u) = {F(0} + ((Kig11KG6] ' [KG3] — [KigD {¢)
(20)

{@") = K51~ (KET{u) — [KEZ1 {9 ) 20

Further inspection of eqn (20) reveals that the “induced-strain™ approaches, in the presence
of sensors, neglect the coupling effects on both the stiffness and the induced piezoelectric
force. The above dynamic system may be solved to obtain either the modal characteristics
(free-vibration), or the forced frequency response or the transient response of the piezo-
electric plate.

4. EVALUATIONS AND DISCUSSION

Application cases on laminated composite plates with active and sensory piezoceramic
layers are presented in this section. The free-vibration response of a simply supported cross-
ply plate with surface bonded continuous piezoceramic layers is analyzed first. Additional
evaluations are presented on the active quasi-static response and free-vibration response of
laminated cantilever plates with distributed discrete piezoelectric patches. When applicable,
correlations with published data are presented. In all cases, the standard laminate notation
is augmented to indicate the lamination and the location of the piezoelectric material
through the thickness, with the letter p indicating the piezoelectric layer.

Hybrid simply-supported plates
The free-vibration response of a 5-ply [p/0/90/0/p] laminated simply-supported square
plate incorporating piezoelectric layers and composite plies was analyzed. Two thickness
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Table 1. Mechanical properties (g, = 8.85 10" farad/m, electric permittivity of air)

Property Gr/Epoxy PZT-4
Elastic properties :
E, (GPa) 132.38 81.3
£y (GPa) 10.76 81.3
Ey (GPa2) 10.76 64.5
G (GPa) 3.61 256
G5 (GPa) 5.65 25.6
Gy, (GPa) 5.65 30.6
iz 0.24 0.33
Vis 0.24 0.43
Yoy 0.49 0.43
Piezoelectric coefficients (10~ 2 m/V):
s, 0 —122.0
ds; 0 —122.0
s 0 —285.0
doy 0 0.0
Electric permittivity :
enlen 35 1475.0
£02/80 3.0 1475.0
£33/ €0 3.0 1300.0
Mass density p(kg/m*) 1578.0 7600.0

aspect ratios are considered corresponding to a thin square plate (/2 = 50) and a thick
plate (a/h = 4), where « is the free span and /4 is the plate thickness, to illustrate the
range of application of the mechanics. Results obtained with the finite-element models are
compared with an exact piezoelasticity solution reported by Heyliger and Saravanos (1995).
The laminate configuration consists of a [0/90/0] Gr/Epoxy cross-ply sublaminate with
composite plies each 0.267/4 thick, where 4 is the plate thickness. Two continuous PZT-4
layers of thickness 0.14 each are also bonded to the upper and lower surfaces of the
laminate. The elastic, piezoelectric and dielectric properties of the laminate materials are
shown in Table 1. To comply with the reported results of the exact solution, all layers were
assumed to have equal density (p = 1 kg/m®). The imposed simple support conditions were :
wx=0, p))=wix=0a p)=wix, y=0=wix, y=20=0, t/(x=0, y) =v/(x=q,
») =0, v (x,y =0) = u'(x, y = 2) = 0. In addition, the outer surfaces of the piezoelectric
layers were forced to remain always grounded. Based on this, two sets of electric boundary
conditions were considered for the inner surfaces of the piezoceramic layers: a closed-
circuit condition labeled with (C), with the potential forced to remain zero (grounded);
and an open-circuit condition labeled with (O), where the electric potential remains free
(zero electric displacements).

Fundamental natural frequency. The predicted fundamental frequency f; of the plate
with various uniform mesh densities and various numbers of discrete layers through the
thickness of the laminate is shown in Table 2. In the case of three discrete-layers (N = 4),
one discrete layer was used for each piezoelectric ply and one for the whole composite
sublaminate ; in the case of seven discrete layers (N = 8), two discrete layers were used for
each piezoelectric ply and one for each composite ply ; and in the case of 20 discrete layers
(N = 21), four layers were used for each piezoelectric and composite ply. For both thickness
ratios, the predicted natural frequencies consistently converge above and below the values
of the exact solution depending on the type of electric boundary conditions, which shows
that the element can model thick piezoelectric composite structures, while it does not lock
at low thicknesses. Although the agreement is very good, the predicted range of the
piezoelectric effect on the fundamental frequency (the difference between (O) and (C)
conditions) is much higher in the FE results than in the exact solution, and the reason for
this difference remains a subject of investigation. The consideration of minimal discrete-
layers through the thickness seems to provide reasonable accuracy in the calculation of
frequencies for both thickness ratios. However, a higher number of discrete-layers may be
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Table 2. Predicted natural frequencies of [p/0/90/0/p] square simply supported plate. (C) Closed circuit ; (O) open
circuit

Fundamental frequency, fia*/hp'? 10° Hz (kg/m)'*

Discrete layers ——

Mesh density (N—1) x/h =4 (C) ath =4 (0) a/h = 50 (C) x/h = 50 (O)
w-constant :
4x4 3 148.154 153.720 249.860 272.860
8x 8 3 145.323 151.222 236.833 259.173
12x12 3 144.768 150.727 234.533 256.765
8x8 7 142.469 148.351 236.785 259.103
8x8 20 142.221 148.177 236.784 259.102
w-variable :
4x4 3 149.310 154.591 253.670 276.185
gx8 3 146.269 151.964 239.628 261.703
12x 12 3 145.675 151.531 237.158 259.655
8§x8 7 142.942 148.692 237.383 259.630
8x8 20 142.630 148.586 237.109 259.895
Exact: 145.339 145.377 245.941 245942

required in thick laminates to capture the local laminate response, as shown in subsequent
examples.

Electromechanical state. The through-the-thickness distributions of the modal dis-
placements and the normalized electric potential of the fundamental mode of the plate at
open-circuit conditions (O) are shown in Figs 2-3 for a thin and thick plate, respectively.
The transverse displacement w and electric potential correspond to the center of the plate
(x = a/2, vy = «/2), while the in-plane displacements v and v are at the midspan of the edges,
e.g, (x=oa,y=0¢/2) and (x = /2,y = u), respectively. An 8 x 8 uniform mesh and seven
discrete layers through the thickness were used. In the case of the thin plate («/4 = 50, Fig.
2) both w-constant and w-variable laminate theories and corresponding finite elements
(FE) yielded identical results with the exact solution. In the case of the thick plate (x/4 = 4,
Fig. 3), both laminate theories (w-constant and w-variable) and corresponding finite
elements yielded excellent agreement with the exact solution. The w-constant theory slightly
underpredicted the in-plane displacements, and did not capture the slight variation in w
(mostly due to the dy; piezoelectric coefficient) in the piezoelectric layers. The variation of
the electric potential in the composites plies was caused by the in-plane electric permittivity
¢1; and &,, of the composite plies. Clearly, the assumptions of simplified theories (simplified
linear displacement and electric fields, single layer assumptions) are only valid for low
thicknesses (Fig. 2), while significant deviations and errors may be observed in thick plates

(Fig. 3).

Modal stresses. The predicted modal stresses through the thickness of the laminate are
shown in Figs 4-5, for the thin and thick plate, respectively. The stresses were calculated
at the points of respective maximum values, that is, at the center (¢,,5,), the corner (v ,,),
and the mid-edges of the plate, (o,., ¢,.). An 8 x8 uniform finite element mesh was used
with 20 discrete layers through the thickness. Calculated stresses with the w-constant finite
element model are shown in Figs 4-5, corresponding to the integration points and elements
closer to the respective stress location. Again for both thickness ratios, the agreement of
the finite element predictions to the exact solution is excellent. Figure 5 shows clearly that
in thick laminates, the stresses exhibit substantial nonlinearity and slope discontinuities
between each ply, which can not be captured by simplified kinematic assumptions. The
previous results and comparisons have demonstrated the excellent accuracy and robustness
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Fig. 2. Fundamental mode in a thin [p/0/90/0/p] simply supported square plate (thickness aspect
ratio a/h = 50). (a) Lateral displacement w/w,,,; (b) in-plane displacements u/w,,, and U/ W 3
(c) normalized electric potential ¢/@,,,..

of the mechanics and the finite elements, and their capability to capture both the global
and local through-the-thickness response of thick and thin piezoelectric plates.

Effect of electric conditions. Figure 6(a—d) illustrates the effect in the modal in-plane
displacements, electric potential, and stresses of the thick plate, when different conditions
are imposed on the electric potential at the inner surfaces of the piezoelectric layers.
Specifically, the cases of forced (equal to zero) and free electric potential are shown in Fig.
6, identified as closed-circuit (C) and open-circuit (O) conditions, respectively. As seen in
Fig. 6a the voltage conditions have a definite effect on the modal in-plane displacements,
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Fig. 3. Fundamental mode in a thick [p/0/90/0/p] simply supported square plate (thickness aspect
ratio a/h = 4). (a) Lateral displacement w/w,,,; (b) in-plane displacements u/w,,. and v/W,..;
(¢) normalized electric potential ¢/@,,...

as a result of the different electric fields in the piezoelectric layers (see Fig. 6b). It is
interesting to note that electric fields exist in the piezoelectric layers even with the closed-
circuit conditions. The effects of electric conditions are more profound in the in-plane stress
o, (Fig. 6¢c) and the interlaminar shear stresses (Fig. 6d), and are attributed primarily to
the differences in the piezoelectric stress component (see eqn (2)).
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Composite plates with discrete piezoelectric patches

The present applications illustrate the natural capability of the finite element to model
more realistic configurations of smart structures, that is: (a) discrete piezoelectric actu-
ators/sensors, and (b) continuous electrodes on the free surfaces which force the sensory
electric potential to remain uniform. The plates considered in this example and the cor-
responding meshes are shown in Fig. 7. The first is a [0/ +45], Gr/Epoxy cantilever plate
with 15 piezoceramic patches at each side built and tested by Crawley and Lazarus (1989) ;
the second is a candidate [p,/0/90/45/—45], T300/934 Gr/Epoxy cantilever plate with 8
square PZT-4 patches at each side with properties shown in Table 1. Both plates were
modeled using the w-constant theory with 3 discrete layers.

[0/ +45], cantilever plate. Figure 8 shows the predicted transverse deflection of the 0.83
mm thick [0/ +45], Gr/Epoxy (AS4/3501) plate shown in Fig. 7a with 15 piezoceramic
patches bonded on each side, even 0.25 mm thick. The deflections are induced by an applied
uniform electric field of 394 V/mm, of opposite polarity at the upper and lower piezoelectric
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patches. Measured data were reported by Crawley and Lazarus (1989), together with some
material properties (additional material properties were backcalculated as required from
related data in the same publication). The following normalized form was used for the
deflections consistent with the way the experimental results were published,

Ty = wyje, Ty =(wy — (W +w3)/2)/c, Ty = (w3 —w))/c

where w,, w, w, are the transverse displacement along the midline and the two edges,
respectively, and c is the width of the plate. The three normalized displacements respectively
represent or approximate the axial bending deflection, the transverse bending curvature,
and the twisting angle due to bending-twisting coupling. There is a very good agreement
between predicted and measured transverse deflection 7. The agreement between predicted
and measured transverse curvature 7, and twisting angle 7 is fair to good. The present
predictions and correlation trends agree remarkably well with similar results reported by
Ha er al. (1992); hence, the differences were attributed to uncertainties in the material
properties and possible specimen imperfections.
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[p2/0/90/45/—45), cantilever plate. Figures 9-10 show the predicted first two elec-
tromechanical modes of this plate (Fig. 7b). All piezoceramic layers were configured to act
as sensors, with continuous electrodes on each surface, which were represented with equality
constraints imposed on the respective electric potential. There is a characteristic modal
voltage distribution corresponding to the characteristic distortion of each mode. The first
mode (Fig. 9) is almost a pure first bending mode in the axial direction. The second mode
(Fig. 10) is the first torsional mode in the axial direction. Both figures indicate the non-
apparent relationship between deflected shape and the corresponding sensory voltage
pattern. The slight asymmetries in the sensory voltage patterns are caused by the flexure-
twisting coupling of the laminate. Figures 9-10 clearly illustrate the various static and/or
dynamic deformations which may be actively induced, for example bending or twisting, by
applying the proper pattern of voltage on the piezoelectric elements. Note also that unde-
sirable deformations, caused by laminate coupling, may be annihilated in this manner. The
natural calculation of the characteristic voltage distributions is an obvious advantage of
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Fig. 6—Continued.

the method, because it provides the voltage patterns required to induce the corresponding
deflection, or to construct the modal filter which can be used to isolate, sense and ultimately
control the respective mode.

Overall, all previous application cases have demonstrated the accuracy, quality and
versatility of the developed laminate theory and corresponding finite elements, and their
capability to model a broad array of global and local responses in most practical con-
figurations of active/sensory piezoelectric composite plates.

5. SUMMARY

Laminate and structural mechanics and the corresponding coupled electromechanical
models for the dynamic analysis of smart composite plate structures with embedded pie-
zoelectric actuators and sensors were developed and described. The described laminate
theories entail mixed displacement and electric field formulations and implement layerwise
representations of the displacements and electric potential. A robust linear plate finite
element, in terms of thickness, was also formulated. The mechanics have capabilities to
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255 152

Fig. 7. Schematic configuration of cantilever plate beams with distributed piezoelectric patches.
(a) [0/£45], plate with 15 piezoelectric actuators/side; (b) [0/90/ 4+ 45], candidate plate with §
piezoelectric actuators/side. Dimensions in mm.

simulate both sensory and active dynamic response of smart composite structures either at
the global structural or the local laminate level.

Correlations of predicted results with exact solutions of simply-supported piezoelectric
composite plates have demonstrated the accuracy, robustness and versatility of the
developed mechanics. The comparisons verified the capability of the present mechanics to
model the free-vibration of thick and/or thin piezoelectric composite plates. Additional
application studies have demonstrated the capability of the mechanics to model the active
and sensory, static and dynamic response of smart composite plates with continuous or
discrete piezoceramic devices. Finally, the applications have demonstrated the possibilities
for dynamic displacement management provided by smart piezoelectric composite struc-
tures.
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Fig. 9. First electromechanical mode of the [0/90/ +45], cantilever plate beam with discrete PZT-4
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Fig. 10. Second electromechanical mode of [0/90/ +45]; cantilever plate with discrete PZT-4 patches
(1st torsion). (a) Lateral deflections wiw,,,,; (b) modal sensory voltage (upper surface).
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